Enhanced Durability Through Increased In-Place Pavement Density

FHWA Asphalt Mixture Expert Task Group (ETG) April 27, 2016

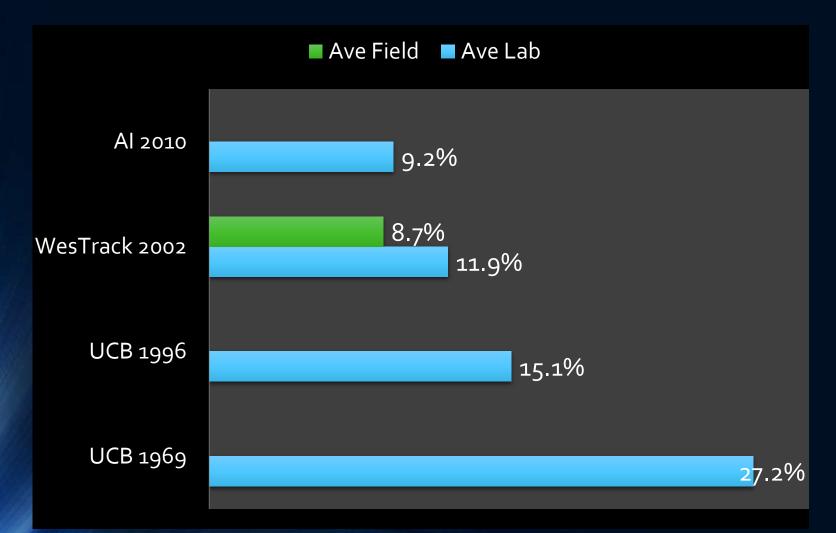
TIM ASCHENBRENER, P.E. FEDERAL HIGHWAY ADMINISTRATION Title 23 Code of Federal Regulations CFR Subchapter G – Engineering and Traffic Operations

Part 626.3 Policy.

"Pavement shall be designed to accommodate current and predicted traffic needs in a safe, durable, and cost effective manner."

Premise:

 Compaction is essential for long-term pavement performance

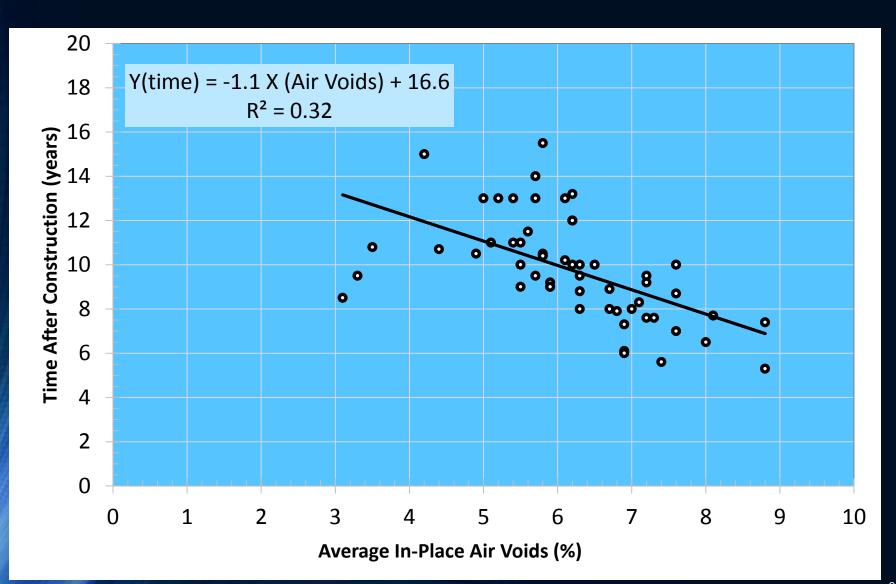

 There are many compaction enhancements currently in use

Compaction goals can be improved

Effect of Air Voids on Fatigue Cracking

Study	Lab/ Field	Mix Type	Air Voids Evaluated	Reduction in Fatigue Life for 1% Void Increase
UC Berkeley (1969)	Lab	British Std	4 - 14%	20.6%
		CA Fine	5 - 8%	43.8%
		CA Coarse	2.5 – 7%	33.8%
UCB (1996)	Lab	CA Dense- Graded	1 - 3% 4 - 6% 7 - 9%	15.1%
WesTrack (2002)	Lab	Fine	4, 8, 12%	13.5%
		Fine-Plus	4, 8, 12%	13.3%
		Coarse	4, 8, 12%	9.0%
	Field	Fine/Fine-Plus	4, 8, 12%	21.3%
		Coarse	4, 8, 12%	8.2%
Al (2010)	Lab	9.5 mm Dense	4 – 11.5%	9.2%


Average Reduction in Fatigue Life for 1% increase in Air Voids


Effect of Air Voids on Permanent Deformation

Study	Lab/ Field	Mix Type	Air Voids Evaluated	Final Field Rut Depth (mm)	Increase in Rut Depth for 1% Void Increase
	Field	Fine/Fine-Plus	4, 8, 12%	9 - 35	11.5%
		Original Coarse	4, 8, 12%	13 - 36	9.6%
		Replacement	4, 8, 12%	12 - 26	66.3%
WesTrack		Coarse			
(2002)	Field	Fine/Fine- Plus/Coarse	4, 8, 12%	9 - 36	7.3%
		Replacement Coarse	4, 8, 12%	12 - 26	10.9%
Al (2010)	Lab	9.5 mm Dense- Graded	4 - 11.5%	N/A	22.7%

Average Increase in Rut Depth for 1% increase in Air Voids

Research from New Jersey

8

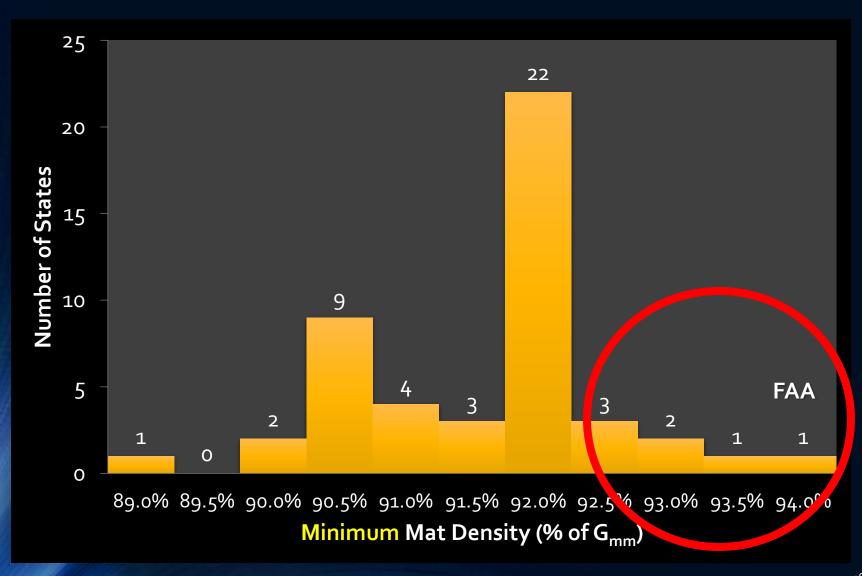
Enhanced Durability through Increased In-Place Pavement Density

- Assumption Pavement density can be increased with a minimum of additional cost
- Long-Term Objective States will increase their in-place asphalt pavement density requirements resulting in increased pavement life

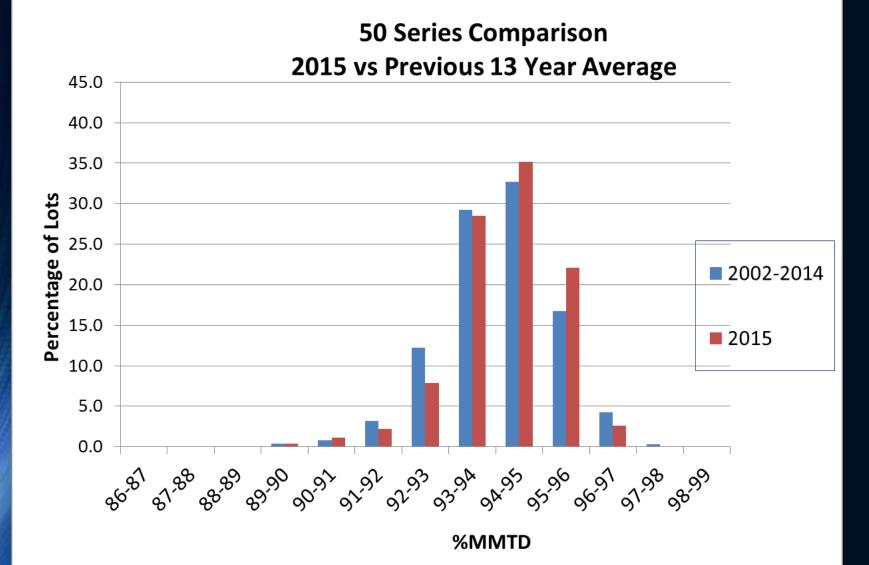
Enhanced Durability through Increased In-Place Pavement Density

- A 1% increase in field density (1% less air voids) is claimed to increase asphalt pavement service-life 10+%! (conservatively)
- Today's compaction target is typically 92% of maximum (G_{mm}) (8% air voids), with varying requirements for the area near the longitudinal joint

Enhanced Durability through Increased In-Place Pavement Density


- A 1% increase in field density (1% less air voids) is claimed to increase asphalt pavement service-life 10+%! (conservatively)
- Today's compaction target is typically 92% of maximum (G_{mm}) (8% air voids), with varying requirements for the area near the longitudinal joint

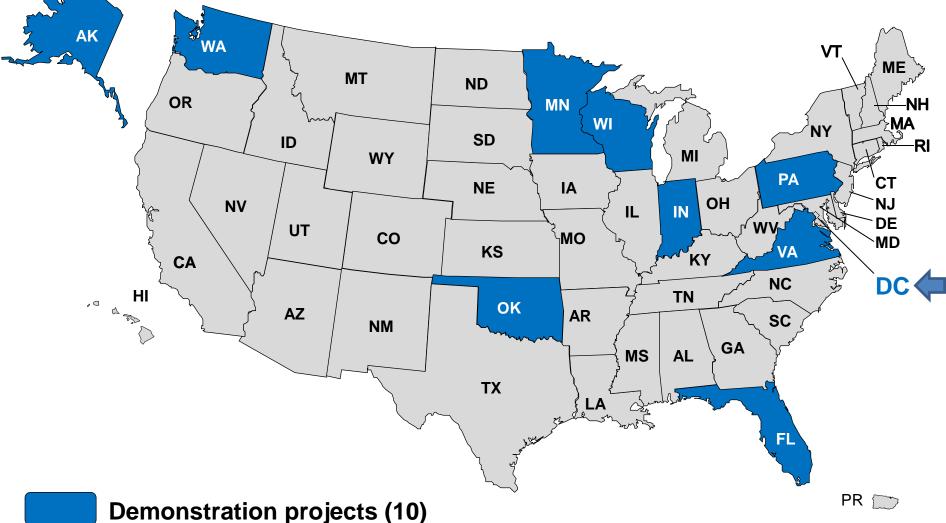
Increased Density Pavements target a 2% increase across the entire pavement!


Just 2% more... makes a huge difference!

2003 AASHTO SOM Survey

NYSDOT Case Study

Increased Density Initiative


Next Steps :

1. Contact FHWA Division Engineers, discuss project goals and identify potential state participants.

2. Fund (FMIS) State Agency trials/reports on feasibility

3. On-site training (AI), Information search (NCAT), Conduct Webinars (NAPA)

Enhanced Durability of Asphalt Pavements through Increased In-Place Pavement Density

Current Specifications (1 of 2)

- 4 States (MN, OK, PA, WI)
 - Minimum lot average
 - Set at 89.5, 90 to 92% of G_{mm}

2 States (DC, PA)

- Minimum individual test
 - Set at 90 to 92% of G_{mm}
 - Note: G_{mb} used by 1 state

Current Specifications (2 of 2)

• 1 State (VA)

- Minimum control strip density
 - Lot average set at 90% of G_{mm}
- 5 States (AK, FL, IN, PA, WA)
 - Percent within Limits (PWL)
 - Setting LSL and USL
 - LSL set at 91 to 92% of G_{mm}
 - Average generally 93 to 94% of G_{mm}

Experimental Plan

Test Section #1

Test Section #2 (optional)

Unique Enhancements

- Support new specification or research (4 states)
- Incentives (3 states)
 - \$ to achieve increased density
 - Partnering with contractor
- Mix adjustments (3 states)
- Additional rollers (2 states)
- IC rollers (2 states)
- SHRP2 IR scan (2 states)
- Statistical evaluation (1 state)

Increased Density Pavements Planned Schedule

- By March 2016, 10 State projects were identified
- By December 2016, 10+ State highway agencies will host an "Increased Density" Asphalt Construction Workshop
 - SHA, Contractors, Equipment Supplies, and Academia
- By December 2016, 10 State highway agencies will place a "Increased Density" Pavement Section
 - FHWA funding evaluations on existing pavement projects
- 2017, document number of states that modify existing standards
 - Goal 10+ states......

THANKYOU..... and Questions

Enhanced Durability Through Increased In-Place Pavement Density

